En los primeros años del Siglo XXI quienes querían disfrutar de juegos como Quake 3 o Far Cry sin saltos de pantalla necesitaban un hardware potente. La solución llegó a través de la tarjeta gráfica GeForce de Nvidia que se convirtió en un éxito de ventas y le permitió facturar más de tres mil millones de dólares. Si bien en la actualidad Nvidia sigue desarrollando este tipo de tecnología, ha desembarcado en la industria automotriz cumpliendo un rol clave en el camino hacia la conducción autónoma.
A principios de la década de 2010, Nvidia se dio cuenta de que había surgido un grupo completamente nuevo de clientes que no estaban interesados en los juegos de ordenador. Se trataba de los investigadores de inteligencia artificial. Se había corrido la voz en la comunidad científica de que las unidades de procesamiento de gráficos (GPU) eran perfectamente adecuadas para cálculos complejos en el campo del aprendizaje automático. A la hora de crear algoritmos de IA, las GPU que realizan operaciones de manera paralela son claramente superiores a los procesadores secuenciales convencionales (unidades centrales de procesamiento o CPU) y pueden reducir significativamente los tiempos de cálculo.
Nvidia vio la oportunidad antes que la competencia y lanzó al mercado el primer hardware optimizado para IA en 2015. Fue en ese momento cuando la compañía se centró de inmediato en el sector del automóvil, aprovechando el lanzamiento de la plataforma Nvidia Drive. El sistema PX 1 era capaz de procesar imágenes de 12 cámaras conectadas y ejecutar simultáneamente programas para evitar colisiones o monitorizar al conductor. Tenía una potencia equiparable a más de 100 ordenadores portátiles. Varios fabricantes utilizaron la plataforma en sus primeros prototipos de vehículos autónomos.
Inicialmente, Nvidia llevó a cabo una estrategia basada en el hardware, suministrando procesadores a los OEM (fabricante de equipo original). En este momento, su negocio en automoción se asienta sobre dos pilares: los sistemas gráficos de las pantallas del interior del coche y el hardware para las funciones de conducción asistida o automatizada.
El año pasado, las ventas de Nvidia en el sector del automóvil alcanzaron los 700 millones de dólares, lo que corresponde al seis por ciento de sus ventas totales. Jensen Huang, fundador y CEO de Nvidia, ve aquí grandes oportunidades de mercado. “Los vehículos del mañana son superordenadores de inteligencia artificial rodantes. En un futuro solo sobrevivirán dos de las numerosas unidades de control que hay ahora: una para la conducción autónoma y otra para la experiencia de usuario”, asegura.
Para lograr una presencia aún más sólida en el mundo del automóvil, Nvidia ha cambiado su estrategia: la empresa ya no se centra únicamente en los chips, sino que ofrece un paquete completo de hardware y software.
“Los clientes pueden crear su propia solución y ahorrar en el desarrollo de base”, explica Ralf Herrtwich, Director de Software de Automóvil de Nvidia. Un fabricante que quiera ofrecer un vehículo semiautónomo puede obtener tanto el hardware para evaluar las imágenes de la cámara como las redes neuronales de Nvidia, por ejemplo, para implementar un sistema de reconocimiento de señales de tráfico. Este sistema modular es abierto, a diferencia de lo que suele ser habitual. “Todas las interfaces quedan a la vista. De este modo, el fabricante puede adaptar el sistema a sus propios requerimientos”, explica Herrtwich.
Con esta estrategia de apertura que permite la adaptación por parte del cliente, la empresa estadounidense tiene como objetivo expandir su negocio al máximo, lo que en última instancia también impulsa el desarrollo de los productos. “Podemos optimizar mejor nuestro hardware si sabemos cómo lo utilizan nuestros clientes”, asegura Herrtwich. Y pone un ejemplo: la mayoría de los productos de Nvidia son “sistemas en un chip” (SoC por sus siglas en inglés). Esto significa que un procesador se combina con otros componentes electrónicos en un semiconductor.
El sector de la automoción utiliza chips con entradas de vídeo integradas a las que se conectan cámaras externas. Pero, ¿cuántas entradas de datos se necesitan? ¿Cómo se debe diseñar la conexión de red? Estas preguntas solo pueden responderse si existe un contacto estrecho con los clientes, dice Herrtwich. El experto en inteligencia artificial Schaper tiene una opinión similar: “La información de otros fabricantes de equipos originales es importante”. En el momento actual, es fundamental trabajar de manera conjunta en los procesos de desarrollo.
Además de hardware y software, Nvidia pone a disposición de los OEM su propia infraestructura. Por ejemplo, los fabricantes pueden colaborar en la formación de redes neuronales en los centros de datos de Nvidia, donde miles de GPU funcionan en paralelo. Hay que tener en cuenta que un algoritmo de conducción autónoma primero debe aprender a reconocer a un peatón, un árbol u otro vehículo. Para ello, se utilizan millones de imágenes de tráfico real sobre las que se han marcado manualmente los objetos correspondientes. Mediante ensayo y error, el algoritmo aprende a identificarlos. Este proceso requiere mucho trabajo (como etiquetar los objetos) y requiere una gran capacidad informática.
Ahora cuando escuches de Nvidia sabrás que, muy posiblemente, su tecnología estará en tu próximo automóvil.